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Abstraet-The degree of the stress singularity that occurs at the termination of an interface between
materials exhibiting bilinear stress-strain response under plane strain conditions is calculated.
The governing elasticity equations together with traction-free boundary conditions and interface
continuity conditions define a two-point boundary value problem. The stress components near the
free edge are assumed to be proportional to r' - '. with solutions existing only for certain values of
J. Finding these values entails the solution of a generalized eigenvalue problem. Because it has been
impossible to integrate the differential equations analytically. the integration has been performed
numerically with a shooting method coupled with a Newton improvement scheme.

INTRODUCTION

It has long been known that the stresses along a bimaterial interface become singular when
the interface terminates at a traction-free edge. Many investigators have presented stress
singularity calculations for these types of structurcs for linear elastic materials (Bogy. I%X.
1970. 1971; Hein and Erdogan. 1971; Dundurs. 1%9). Bogy (IWlX) considered the plane
problem of two dissimilar orthogonal clastic wedges. bonded togcthcr and subjected to
surface traction on the boundary. With the aid of the Mellin transform in conjunction
with the Airy stress function. the solution of the transformcd prohlem is obtained. The
asymptotic behavior of the elastic solution in the vicinity of the intersection of the bonded
and loaded planes was investigated. Certain components of stress along the interface were
found to be singular. Bogy (1970) elaborated on his earlier study after a discussion by
Dundurs (1969) revealed :t systematic way of parameterizing the results. Bogy (1971)
investigated the mueh more general problem of bonded dissimilar elastic wedges with
arbitrary wedge angles. The emphasis here was placed on the investigation of the dependence
of the order of singularity in the stress field at the apex of the wedge on the wedge angle
and material constants. Dempsey and Sinclair (19S I) provide analytical information on the
stress which can occur in the vicinity of the vertex of a two-dimensional wedge for a wide
range of boundary and interface conditions. In a recent paper. Duva (19SS) employed an
idealized model of a fiber end consisting of an orthogonal rigid wedge embedded in a
nonlinear material to investigate the singular behavior of the stress and strain fielJs at the
corner of a fiber.

The purpose of the present paper is to extend Duva's work to the case of a bimaterial
interface problem where each material is assumed to have a bilinear stress-strain response.
Specifically. the degree of stress singularity that occurs at the free edge in a bimaterial strip
under plane strain conditions is sought. The governing elasticity equ:ttions together with
the traction-free boundary conditions and the interface continuity conditions define a two­
point boundary value problem. The solution results in a generalized eigenvalue problem
where the degree of the stress singularity is the eigenvalue. Because it has been impossible
to integrate the governing differential equations analytically. their integration has been
performed numerically. The investigation carried out in this paper w.tS focused on stress
components proportional to " - I" being the distance from the point at which the singularity
occurs. and 0 < s < I.

Specific numerical results are presented for material combinations that occur frequently
in microelectronic applications.

t Presently at Korea Atomic Energy Institute. PO Bo~ 7. Daeduk-D'lI1ji. Taejeon. Korea 305-353.
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Fig. I. Configuration of bimatcrial intcrface.

FORMULATION

The physical contiguration under investigation consists of two layers joined by a perfect
bond. Figure I is a schematic of the bimateri.1! strip. A local polar coordinate system h.ls
been erected at the point of anticipated stress singularity.

The stress equilibrium equations relative to this coordinate system are

i')( rITdJ) (~ITj)1I

~ + ~ J + IT," = ()
II' ((

and the linear strain displacement equations arc

(I)

(2)

(3)

(4)

(5)

Hen.: 1/ and I' arc the radial and tangential components of displacement. respectively. Note
that linear strain displacement equations are used even though large strains are anticipated
ncar r = O. This is a convenient simplification that has been taken advantage of in many
earlier investigations of related problems [e.g. Hutchinson (1968)].

The uniaxial stress-strain relationship for the material in each layer is assumed to obey
the following nonlinear elastic-plastic response (see Fig. I)

CT
C = £ CT < CTn (6)

(7)

where £and £r are the elastic modulus and the "so-called" tangent modulus of the material.
respectively. The symbols ITn and Co (cn = ani£) represent constants that can be interpreted
loosely as yield stress and strain. respectively. This equation is strictly applicable for a
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monotonically increasing stress and cannot accommodate elastic unloading. Alternatively.
eqn (7) can be viewed as describing a nonlinear elastic material. This will be the viewpoint
adopted in this paper. The multiaxial isotropic generalization is

I [ . 3(E )(Te-(Tll ]
E" =E (I + v)(T" - \·(j,,(Tu +:2 E

T
- I -----;:-- 5" (8)

where 5,/ is the deviatoric stress defined by 5" = (T" - !(Tu<>/f' The symbol (Te represents the
effective stress defined by (Te =n5k,5k') , =. Here v is Poisson's ratio. We will assume that in
the vicinity of the traction-free edge. stresses are sufficiently high that eqn (8) holds. The
first two terms in the brackets of eqn (8) describe the usual linear elastic behavior whereas
the third term contains the tangent modulus that produces the plastic (or nonlinear elastic)
response. If the material is regarded as a deformation theory material. the initial elastic
portion of the strain must be retained. The elastic component of the strain does not become
negligible compared to the plastic strain for large stresses. Note that only the plastic
component of the strain is necessarily incompressible.

For the displacement and stress field near the point r = O. a separation of variables
solution is proposed in the form following Ponte Castaneda (1987)

II, = Kr'fl/(O)' I', = Kr'.I~,(f}). (9)

(TtllI/ = E,Kr' '/,,(0). ",tI, = E,Kr' 'J~,(/J). ( 10)

(T", = E,Kr' '/,,(0). "::, = E,Kr' './;AO). ( II )

where the JAO). i = 1.2..... 6 are as yet undetermined functions of O. The subscript I takes
on the values I = I. 2 depending on which layer is considered. The constant E,K has been
included. K having the dimension of (/(,1Iglh) ", to render '/;, dimensionless. These geneml
formulas for displacement and stress lead to four coupled first-order ordinary differential
equations and two algebraic equations in each layer.

Lal't" I
If the equation for I:" is formed using eqn (3) and eqn (8). the following algebmic

equation is obtained

( 12)

Then if the condition I:" = 0 (plane strain) is enforced with eqn (8), another algebraic
equation is obtained.

( 13)

Next. the stresses given by eqns (10) -( II) are substituted into the equilibrium eq uations.
Two differential equations result,

( 14)

( 15)

where the superscript prime' indicates ordinary differentiation with respect to O. Finally,
the equations for EII/, and Edl are formed using eqn (4) and eqn (5) in eqn (8), with two
additional differential equations resulting.
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( 16)

( 17)

Layer 2
A similar set of differential algebraic equations is obtained for Layer 2:

The constants A I amI A ~ appearing in the equations above arc

( 18)

( 19)

(20)

(21 )

(22)

(23)

(24)

Assuming that the stresses are large near the singularity. «(1</-(111/)/(1</) -> I. Thus. this
term is omitted in subsequ9't computations for A,. The functions f~,(l}) and J~/(O) can be
eliminated solving eqns (12)-( (3) or eqns (I B)-( (9) simultaneously.

(25)

(26)

where d = (I + 3A/)~ -(\',+ \A,)~.

With these results the 12 differential algebraic equations are effectively reduced to a
system of eight first-order differential equations

(27)

(28)

(29)

(30)

(3\ )
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(32)

(33)

(34)

What remains is to specify the traction-free edge conditions and the interface continuity
conditions. Referring to Fig. I. the traction-free edge conditions are:

Layer I

(35)

(36)

Layer 2

(37)

(38)

Thc following c4u;ltions enforce continuity oftntction and displacement along the interface:

O',~, I (r, () == 0) == O'II,dr, () == 0) => EI1"31(0) == EdH(O) (39)

"'III (r. () == 0) == O',II1(r. () == 0) => Elj~I(O) == Ed~2(0) (40)

"I(r, 0 == 0) == 112(r, 0 == 0) => II 1(0) == fdO) (41 )

l'.(r,O == 0) == L'1(r, 0 == 0) => I21 (0) == 122(0). (42)

The eight differential equations together with the homogeneous boundary conditions and
continuity conditions define a two-point boundary value problem. Solutions to the differen­
tial equations exist for certain values of s (eigenvalues). Because it has been impossible to
determine s and integrate the governing differential equations analytically, a numerical
apprmlch has been taken by treating the problem as an initial value problem. A shooting
method has been adopted whereby the differential equations in Layer I are integrated from
their initial values at 0 == n/2 to 0 == 0. Likewise, the equations in Layer 2 are integrated from
o= -n/2 to 0 = O. This process is repeated systematically until the continuity conditions on
the interface are satisfied within an acceptable level of accuracy. Since the eigenfunctions
./AO) can only be determined to within a multiplicative constant, one can set 11.(n/2) == 1
without loss in generality. The quantities s, 1'11(n/2). 1'12( -n/2) and I'n( -n/2) are then
treated as the primary unknowns. The numerical integration was performed using a fourth­
order Runge-Kutta method. A Newton (secant) iterative scheme was employed to improve
the "guesses" for the values of the unknowns. During the kth iteration the values of the
unknowns are stored in a vector xk as follows:
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(43)

The errors in the satisfaction of the continuity conditions are stored in a vector bk as follows:

bk = (44)

The notation II I (x~, x~) is meant to indicate that the value of the function Ilion the
interface (0 = 0) in Layer I is a function of the unknowns x~ and x~. The formula that
produces a new estimate (k + I) of the unknowns given sets of guesses at the k th and
(k - I )th iterations is

\,k+ 1

x\ ]
k ll k l1 kll

k"]
I

[ h' ]

, I I

x~ ~ I \,k k 11 k ~~ k ~ 1 k ~4 h~. ~

(45)
\'k • 1 \.k k ll k 14 h~, I ' .I kl~ k\1
\.k. I \'k k 41 k 41 k H k H h~, ,I • 4

Explicit formulas for the terms in the "Jaconian" matrix are:

I,X~ 1)1-L1;I(X~,X\ 1)_j;~(X~,XII

x~ I -x~

I,X~ I») (46)

k, = LI;tC\'~ I,X\ 1)-.t:l(X~
t.

I,X\ I,X~ 1»)-l.I;I(X~ I,X~)-./;l(X~

x; I_ X \

I,X~ I,X~ I)) (47)

I,X\ I,X~ 1»)-[.l:I(X~'I,X~-I)-f1(X~ ',X\·I,X~»)

-~~~-I
(49)

The subscript i takes on the values i = I. 2, 3, 4. Note that when i = 3 or 4. the./;, terms
must be multiplied by £1 and the.l:1 terms must be multiplied by £1. respectively [see eqns
(39)-(40»).

NUMERICAL RESULTS

For potential pmctical application of the present theory, specific numerical results are
presented for two material combinations that occur frequently in thin-film microelectronics,
namely silicon··nitridc/aluminum and silicon/aluminum. All results are for plune stmin
deformation. The material properties data were obtained from the references provided by
Brady and Clauser (1986), Bleach and Meieran (1967) and Lynch (1975).

(i) Silicm,..,tirriele/a{umillllm (Si]N 4/AI)

E, = 70.6 GPa. \', = 0.345, En = variable

E~ = 220.0 GPa, \'1 = 0.27, Er~ = variable.
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Table 1. Stress singularity for various stress-strain response combinations

(QIt Q2) SisNt / AI SitAI
(1.0,1.0) r-' r- .

(0.5,0.5)
(0.0,0.0)
(0.5,1.0)
(0.0,0.5)
(0.0,1.0) r-' T- .

(1.0,0.0) T-' r

(ii) Silicon/alumillum (Si/Al)

E 1 = 70.6 GPa. \'1 = 0.345, E rl = variable

E~ = 170.0 GPa. \'~ = 0.28. Er~ = variable.

III

Convergence of the current analysis was considered adequate when III 1(0) -II ~(O)I < 10 J,
If~,(O)-IdO)1 < IO- J. IEJlI(O)-EJdO)1 < 10·J and IElj~I(O)-E~jdO)1< \0 J.
Convergence was typically obtained in less than \0 iterations. Since the material model
selected is not valid when :r -+ O. results reported here for :r = 0 arc actually limiting valw:s
using:l = I X 10 1

• Flow thcory plasticity must be used to obtain rigorous results for this
situation.

For the special case where the materials arc linear elastic (:r I = 7 ~ = I). the stress
singularity for Si ,NJ/AI is, n In~H. while the stress singularity for Si/AI is, ""hOI". These
results arc in complete agreement with the often quoted results of Bogy (1970). Valucs of
" I for various combinations 01':1 I and :r~ are given in Table I. For linear elastic materials
(7 I = 7~ = I), the degree of singularity is always smaller than that for bilinear materials
(7,.:I~ #- I). The strongest singularity occurs when one layer is linear clastic and the other
layer is nearly clastic-perfectly-plastic. Angular dependence of the eigenfunctions for the
Si,NJ/AI material combination when :1 1 = 0.5, :x~ = 1.0 is shown in Fig. 2. Inspection of

01 .. 0.5,0, .. 1.0, E1 .. 70.6, E, .. 220.0

~
~ 0

a N

0.;:
u

~...
0
u..,
'j

0

::ll

0
N
I

-- ..... -.- . -. j

-0.4 -02 0 0.2 0.4

Fig. ~. Angul'lr dependence of the eigenfunctions for Si,N./AI.
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Table~. Stress slOgu!anty for various E~i£, ratios

(01)0%) ~ 111 V, Singularity
(1.0,1.0) 2.0 0.345 0.27 ,-U.U4V,

(1.0,1.0) 5.0 0.345 0.27 ,-U.I)>>UI

(1.0,1.0) 10.0 0.345 0.27 r- u,,,,,,

(1.0,1.0) 20.0 0.345 0.27 , -0.15)41

(0.5,0.5) 2.0 0.345 0.27 , -U.U80&u

(0.5,0.5) 5.0 0.345 0.27 ,-U.lVv~.

(0.5,0.5) 10.0 0.345 0.27 , -U.183"

(0.5,0.5) 20.0 0.345 0.27 ,-U.3.e11

(0.0,0.0) 2.0 0.345 0.27 ,-o.onn

(0.0,0.0) 5.0 0.345 0.27 ,-v...~~.

(0.0,0.0) 10.0 0.345 0.27 , -U.3041O

(0.0,0.0) 20.0 0.345 0.27 r -v."'"

Tahlc J. Stress singularity fnr v;lrious P(lisson', ratios (\·,.I'~) (linear materials)

(01)0:) !?, III lI: Singularity
(1.0,1.0) 3.1 0.345 0.27 ,-0.10144

(1.0,1.0) 3.1 0.345 0.30 ,-v.•uu,,,

(1.0,1.0) 3.1 0.345 0.33 ,-0.0»»40

(1.0,1.0) 3.1 0.345 0.36 , -U.VV(14

(1.0,1.0) 3.1 0.33 0.27 ,-o.oe111

(1.0,1.0) 3.1 0.30 0.27 r- v.v....

(1.0,1.0) 3.1 0.27 0.27 r- O.014"

Tab!.: -I. Sln:ss singularity 1'''1' various 1'''lsson's ratios (1',.1',) (bIlinear maleri;tls)

(l.tI,Q:) ~ III 11% Singula.rity
(U.5,0.5) 3.1 0.345 0.27 ,-0.110••

(0.5,0.5) 3.1 0.345 0.30 ,-V.IU'»

(U.5,0.5) 3.1 0.345 0.33 ,-0.11000

(0.5,0.5) 3.1 0.345 0.36 ,-U.U4••

(0.5,0.5) 3.1 0.33 0.27 r-O.I%%77

(0.5,0.5) 3.1 0.30 0.27 ,-U.11B.

(0.5,0.5) 3.1 0.27 0.27 ,-U.lllU

(0.0,0.0) 3.1 0.345 0.27 ,-V.I...V

(0.0,0.0) 3.1 0.345 0.30 r-V....1V

(0.0,0.0) 3.1 0.345 0.33 ,-0.ln2»

(0.0,0.0) 3.1 0.345 0.36 ,-u.l..n

(0.0,0.0) 3.1 0.33 0.27 ,-0.IU2»

(0.0,0.0) 3.1 0.30 0.27 ,-U.I..1V

(0.0,0.0) 3.1 0.27 0.27 ,-v.••••»

this figure reveals that the continuity ofdisplacement and traction on the interface is satisfied
along with traction-free conditions on the free edge.

T'lble 2 shows the dependence of the strength of the singularity on the ratio E1/ E"
holding Poisson's ratio constant. The singularity increases as the ratio E1/E1 increases.

Tahle J shows the relatively weak dependence of the stress singularity on the values of
\', and 1'1 for linear materials, holding the ratio of E1/E, constant. The results show that
the degree of singularity remains relatively small for widely varying values of Poisson's
r'ltio.

Table 4 shows the depemkncc of the stress singularity on various values of v I and 1'1'

for bilinear materials. Again, Poisson's ratio has a relatively weak influence on the stress
singularity.
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CONCLUSIONS

The stress singularity ,J- I for 0 < s ~ I that occurs at the free edge in a bimaterial
strip with bilinear material properties has been investigated. The singularity is typically
much stronger when the materials exhibit a bilinear stress-strain response. compared with
linear elastic materials.
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