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Abstract—The degree of the stress singularity that occurs at the termination of an interface between
materials exhibiting bilinear stress—strain response under plane strain condittons is calculated.
The governing elasticity equations together with traction-free boundary conditions and interface
continuity conditions define a two-point boundary value problem. The stress components near the
free edge are assumed to be proportional to r'~', with solutions existing only for certain values of
s. Finding these values entails the solution of a generalized eigenvalue problem. Because it has been
impossible to integrate the differential equations analytically, the integration has been performed
numerically with a shooting method coupled with a Newton improvement scheme.

INTRODUCTION

It has long been known that the stresses along a bimatertal interface become singular when
the interface terminates at a traction-free edge. Many investigators have presented stress
singularity calculations for these types of structures for lincar clastic matenials (Bogy, 1968,
1970, 1971 ; Hein and Erdogan, 1971 Dundurs, 1969). Bogy (1968) considered the plane
problem of two dissimilar orthogonal clastic wedges, bonded together and subjected to
surface traction on the boundary, With the aid of the Mcllin transform in conjunction
with the Airy stress function, the solution of the transformed problem is obtained. The
asymptotic behavior of the clastic solution in the vicinity of the intersection of the bonded
and loaded planes was investigated. Certain components of stress along the intertace were
found to be singular. Bogy (1970) claborated on his carlier study after a discussion by
Dundurs (1969) revealed a systematic way of parameterizing the results. Bogy (1971)
investigated the much more genceral problem of bonded dissimilar elastic wedges with
arbitrary wedge angles. The emphasis here was placed on the investigation of the dependence
of the order of singularity in the stress field at the apex of the wedge on the wedge angle
and material constants. Dempsey and Sinclair (1981) provide analytical information on the
stress which can occur in the vicinity of the vertex of a two-dimensional wedge for a wide
range of boundary and interface conditions. In 4 recent paper, Duva (1988) employed an
idealized model of a fiber end consisting of an orthogonal rigid wedge embedded in a
nonlinear material to investigate the singular behavior of the stress and strain fields at the
corner of a fiber.

The purposc of the present paper is to extend Duva's work to the cuase of a bimaterial
interface problem where each material is assumed to have a bilinear stress-strain response.
Specifically, the degree of stress singularity that occurs at the free edge in a bimaterial strip
under plane strain conditions is sought. The governing elasticity equations together with
the traction-free boundary conditions and the interface continuity conditions define a two-
point boundary value problem. The solution results in a gencralized eigenvalue problem
where the degree of the stress singularity is the eigenvalue. Because it has been impossible
to integrate the governing differential equations analytically. their integration has been
performed numerically. The investigation carried out in this paper was focused on stress
components proportional tor* ~ ', r being the distance from the point at which the singularity
occurs,and 0 < s < I

Specific numerical results are presented for material combinations that occur frequently
in microelectronic applications.

t Presently at Korea Atomic Energy Institute, PO Box 7. Daeduk-Danji. Tacjeon, Korea 305-353.
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Fig. 1. Configuration of bimaterial interface.

FORMULATION

The physical configuration under investigation consists of two layers joined by a perfect
bond. Figure | is a schematic of the bimaterial strip. A local polar coordinate system has
been erected at the point of anticipated stress singularity.

The stress equilibrium equations relative to this coordinate system are

Mra,)  Cay

G =0 1
or ) " (H
T nl
(ro,,)  Coy
+a,, =0 2
or ol ! (2)
and the lincar strain-displacement cquations are
i 3)
Epp = J
T or
Iar + I @)
Egg = = z5+ -
TR0
tfléu o0 v
tp=zl- o+ —- | (5)
TTA2\rQ0 T or

Here w and ¢ are the radial and tangential components of displacement, respectively. Note
that linear strain-displacement equations are used even though large strains are anticipated
near r = 0. This is a convenient simplification that has been taken advantage of in many
carlier investigations of related problems [e.g. Hutchinson (1968)].

The uniaxial stress-strain relationship for the material in each layer is assumed to obey
the following nonlinear clastic-plastic response (sce Fig. 1)

T
£= L 0<0ay (6)
g
t=gy+ Er Y o> T N

where £and E are the elastic modulus and the “so-called™ tangent modulus of the material,
respectively. The symbols o, and &, (£, = 0/ E) represent constants that can be interpreted
loosely as vield stress and strain. respectively. This equation is strictly applicable for a
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monotonically increasing stress and cannot accommodate elastic unloading. Alternatively,
eqn (7) can be viewed as describing a nonlinear elastic material. This will be the viewpoint
adopted in this paper. The multiaxial isotropic generalization is

| 3 E e
E:/ = El:(l +")U:/ ‘():lo'kk + 3 ( l)o a(! Slli] for a, > Gy, (8)

ET G,

where s,, is the deviatoric stress defined by S, —109,,- The symbol g, represents the
effective stress defined by g, = (3s50)' ° Here v |s Ponsson s ratio. We will assume that in
the vicinity of the traction-free edge. stresses are sufficiently high that eqn (8) holds. The
first two terms in the brackets of eqn (8) describe the usual linear elastic behavior whereas
the third term contains the tangent modulus that produces the plastic (or nonlinear elastic)
response. If the material is regarded as a deformation theory material, the imitial elastic
portion of the strain must be retained. The elastic component of the strain does not become
negligible compared to the plastic strain for large stresses. Note that only the plastic
component of the strain is necessarily incompressible.

For the displacement and stress field near the point r = 0, a separation of variables
solution is proposed in the form following Ponte Castaiieda (1987)

w = Kr'fu(0), v, = Krif.(0). 9
Ty = EIK'" ‘f\/(”)' Ty = E/i\.’"' I/Ql(())‘ (10)

0= ERr* ' fy(0), a.=ERr [0, (1

where the £,(0), i = 1,2...., 6 arc as yet undetermined functions of ). The subscript / tukes
on the values [ = 1, 2 depending on which layer is considered. The constant £,K has been
included, K having the dimension of (length)' *, to render f, dimensionless, These general
formulas for displacement and stress lead to four coupled first-order ordinary differential
equations and two algebraic equations in each layer.

Layer |

If the equation for ¢, is formed using eqn (3) and eqn (8), the following algebraic
equation is obtained

sfo=SLa=—vilfu+fe)+ ‘“(7/5|—/1| —fo1)- (12)

Then if the condition ¢.. = 0 (plane strain) is enforced with eqn (8), another algebraic
equation is obtained,

A
Su=uiUfstfid+ 5 @ai=fu=fu) = 0. (13)

Next, the stresses given by eqns (10)-(11) are substituted into the equilibrium equations.
Two differential equations result,

Ssitfa~f1=0 (14)
+Dfa+f1=0 (15)
where the superscript prime “ indicates ordinary differentiation with respect to . Finally,

the equations for ¢4 and ¢,, are formed using egn (4) and eqn (5) in egn (8), with two
additional differential equations resulting,
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Satfu=a—vilfsi+fa)+ %—'(zf.u-fsx—fm)

Wa+G=Dful=fall+v,+4).

Laver 2

A similar set of differential algebraic equations is obtained for Layer 2:

. . A, .
sfiz=fsa=va(fra+fe2) + ‘3“- (Y2 =fr2=1s2)

A, .
Sor=va([fs2+f32) + T.(zfoz —fs2=f12) =0

Sfs2+f4:=f32=0

(s+Dfi:4+f2=0
., . . . . Ay . .
Su+fi:=lu=v:(f+S )+ ‘:i‘(?:/x:—/s:—_/(.:)
W= ) = o4+ 4,).

The constants A, and A, appearing in the equations above are

3 Oy—0 E
A,=2(a,—l)( ! '"> where o, = Er;l'

O

(16)

an

(18)

(19)

(20

n

(22)

(23)

(24)

Assuming that the stresses are large near the singularity, ((6,, —a4)/ay) — L. Thus, this
term is omitted in subscqu911 computations for A,. The functions f(#) and f,(0) can be

climinated solving eqns (12)-(13) or eqns (18)-(19) simultancously,

.—.l (' AI>' ' A ‘ <‘ 2A>.]
/5/—& vi+ 3 (t+v,+A4)u+ +3 )8
| ' A vt AN ’ IA)"

j"’—K v+ 3 (I+v,+4)fy+ "+j 1 )8

where A = (14 34,)° = (v, + 14))".

(25)

(26)

With these results the 12 differential algebraic equations are effectively reduced to a

system of eight first-order differential equations
Sia=Yall+vi+A4)=(-1)/y
, A . .
fa=Lfi=vilfs+fo)+ T(zjll_jil"'fbl)—fll

Su=—=6+0)f
"u =f.\|—5fsu

S =Yull+vs+4)~(G—Df2:

(27)

(28)

(29)
(30)

(an
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A,
So=fia=valfsa+fe) + T(zf.\:—fsz"fo:)‘flz (32)
[i=—(+Dfs: (33)
[ = fii—sfse. (34)

What remains is to specify the traction-free edge conditions and the interface continuity
conditions. Referring to Fig. |, the traction-free edge conditions are:

Layer |

le("~0=;)=0 = f.\l(g)=0 (35)

a,.,.(r.o=’zf)=o - f“(’zf).«.o (36)

Layer 2

U,m:(l', 0 = - g) = 0 = /\:(" ;) = O (37)
1 . n
0;01("0= "2>=0 = /4:(“2)=0- (38)

The following equations enforce continuity of traction and displacement along the interfuce :

Owi(r.0=0) =06,:(r,0=0) = E f,,(0) = E:f1:(0) (39)
0,0 (r.0=0)=0,:(r,0 =0) = E [,,(0) = E:f12(0) (40)
u(r,0=0)=u(r,0=0) = f,(0) = /:(0) (41)
ei(rn0=0)=0vy(r,0=0) = /[,,(0)= /(0. (42)

The eight differential equations together with the homogeneous boundary conditions and
continuity conditions define a two-point boundary value problem. Solutions to the differen-
tial equations exist for certain values of s (eigenvalues). Because it has been impossible to
determine s and integrate the governing differential equations analytically, a numerical
approach has been tuaken by treating the problem as an initial value problem. A shooting
method has been adopted whereby the differential equations in Layer | are integrated from
their initial values at 0 = n/2to 0 = 0. Likewise, the equations in Layer 2 are integrated from
0 = —n/2t00 = 0. This process is repeated systematically until the continuity conditions on
the interface are satisfied within an acceptable level of accuracy. Since the eigenfunctions
14(0) can only be determined to within a multiplicative constant, one can set f,,(n/2) = |
without loss in generality. The quantities s, f,(/2). f1:(—n/2) and f3:(~n/2) are then
treated as the primary unknowns. The numerical integration was performed using a fourth-
order Runge-Kutta method. A Newton (secant) iterative scheme was employed to improve
the “*guesses™ for the values of the unknowns. During the kth iteration the values of the
unknowns are stored in a vector x* as follows:
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x* s

& = x4 fidm2) (43)
X’fx fia(=m:2)
x4 Sa(=m2)

The errors in the satisfaction of the continuity conditions are stored in a vector b* as follows :

B fuxh %) -fi 2(xf. hoxd

P N R B ATE R B S CA PR R (a4)
b4 E i x5 — Es fua(h x4 x%)
I Elf.u(v"kl--"g)'“E:fJ:(v\'ﬁ--"‘,;~-Vﬁ)

The notation f;,(x%. x%) is meant to indicate that the value of the function f,, on the
interface (€ = 0) in Layer | is a function of the unknowns x% and x%. The formula that
produces a new estimate (k1) of the unknowns given sets of guesses at the Ath and
(A = 1)th iterations is

A ¥ koo kiy koo ki o h
! x4 ksy ki ko ks I3
A I B Il N i PR
.\'\‘\ Xy kn k;_a /\'_u k,\-l h‘
.\‘{‘;H .‘:ﬁ k,“ k,,: k;x ,\'44 b{;

Explicit formulas for the terms in the “Jacobian™ matrix are:

_[./;l(-\‘kl lv“k.‘ I)'A/;.‘(-\'kx l-~\‘k‘ A )l—(/ll(\h Az )=f01 (\h-\\ '.-\'ﬁ l)]

ko = \4‘} b (46)
ko= VATC R B R AT ,I,"E,‘iw",;\‘};;!‘)}-',{{“ () /00 L ) (47
Vit =
gy = a0 Dol LA DI s D=/l S D
\_\ —.\
k= FATE et N B G R MR Al |] U"(".'l IR 01N "'}f‘pl""all' (49)

\ ‘_\4

The subscript / takes on the values i = 1, 2, 3, 4. Note that when i = 3 or 4, the /,, terms
must be multiplied by £, and the f;, terms must be multiplied by £,, respectively [see eqns
(39)-(40].

NUMERICAL RESULTS

For potential practical application of the present theory, specific numerical results are
presented for two material combinations that occur frequently in thin-film microelectronics,
namely silicon-nitride/aluminum and silicon/aluminum. All results are for plane strain
deformation. The material properties data were obtained from the references provided by
Brady and Clauser (1986), Bleach and Meieran (1967) and Lynch (1975).

(1) Silicon-nitride{aluminum (Si;N /Al

E, =706 GPa, v, =0.345, E;, = variable
E,=2200GPa, v,=0.27 E;, = variable.
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Table 1. Stress singularity for various stress-strain respoase combinations

oy, @z) | SisNy/Al| Si/Al

(1.0,1.0) | PP >
(0.5'0.5) r-o.lm"m

(0.0,0.0) 701538 | —O T08IT |
(0.5,1.0) [ 03T | =0TBIT]
(0.0,0.5) [ 70400 | 0T
(0.0,1.0) [ w00 | 7040

r
(1.0'00) r—l).mr'_r_:ﬂm-

(i) Silicon/aluminum (Si/Al)

E, =70.6 GPa. v, =0.345 E, = variable

E: = 170.0 GPa. v, = 0.28. Er: variable.

Convergence of the current analysis was considered adequate when | £1,(0) = £,:(0)] < 107°,
/20000 =f22:0) < 10 |E, f30(0) = E3/32(0)| < 10 and |E, f4,(0) = E+f::(0)] < 107,
Convergence was typically obtained in less than 10 iterations. Since the material model
selected is not valid when x = 0, results reported here for 2 = 0 are actually limiting values
using 2 = | x 10 *. Flow theory plasticity must be used to obtain rigorous results for this
situation,

For the special case where the materials are lincar elastic (2, = 2, = 1), the stress
singularity for Si \Ny/Alis r *'"2* while the stress singularity for Si/Alis r "***", These
results are in complete agreement with the often quoted results of Bogy (1970). Values of
r' ' for various combinations of x, and «, are given in Table 1. For lincar elastic materials
(%) = 2; = 1), the degree of singularity is always smaller than that for bilincar materials
(2.2, # 1). The strongest singularity occurs when one layer is linear elastic and the other
layer is nearly celastic—perfectly-plastic. Angular dependence of the eigenfunctions for the
Si;N /Al material combination when «, = 0.5, 2, = 1.0 is shown in Fig. 2. [nspection of

ay = 0.5,0y = 1.0, E; = 70.6, E; = 220.0

T T B T T 7,
a fom= = « = —
Kr? Krt
9la fomzt fo==
Fa - s Jn == —
- 2 Krs
952 N
o Efiyme= n Foen
Krs= . N 51]31='::ﬁ'
B foym 222 S l:,av 1
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= N
< ol 4
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Fig. 2. Angular dependence of the cigenfunctions for Si N,/Al
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Table 2. Stress singularnty for various £, E, ratios

(ana) [ B | w vy | Singularity
{1.0,1.0)] 2.0 |0.345 | 0.27| r-0007 |
{(1.0,1.0)] 50 [0.315]027] r¥
(1.0,1.0) [10.0[0.345 | 0.27 | r-028%7
{1.0,1.0)} 20.0] 0.345 ] 0.27] r-0-26540 |
(0.5,0.5)] 2.0 [0.345]0.27| r-o08®
(0.5,0.5)] 5.0 [0.315[0.27| r-0-1908T
(0.5,0.5) [10.0 | 0.345 [ 0.27 | r-038%¢ |
(0.5,0.5) | 20.0 | 0.345] 0.27] r-038911
{0.0,0.0)] 2.0 {0.345[0.27] r 00 |
(0.0,00)| 5.0 [0.345[0.27 r-0208T |
(0.0,0.0) | 10.00.345| 0.27 | »-0-30
(0.0,0.07 20.0 1 0315027 0308

Table 3. Stress singularity for vitntous Poisson’s ratios (v,. v} (linear materials)

(ay,a0) [ B T v2 | Singularity |
(1.0,1.0)[3.1]0.345]0.27| »-0103
11.0,1.0)[3.10.345 | 0.30 | r—01007
(1.0,1.0)]3:1]0.345]0.33 r‘°':::::
(1.0,1.0)[3.1[0345[0.36 ] r—%
(1.0,1.0)[3.1]0.33 [0.27] 009
(1.0,1.0)]3.1]030 |0.27] r-o0mil
(1.0,1.0) | 3.1]0.27 |0.27| »r-00RE

Table 4 Stress singularity for various Poisson's ratios (v, vy} (hilincar materials)
() E 4 vy Singularit?’
(0.5,0.5)[3.1]0.345]0.27] »-01B%¥
(05,0.5)13.1]0345]| 0.30 | r-o180 |
(0.5,05)[3.1]0.315]0.33] »-0TH0
(0.50.5)[3.1[0345[0.36| r-01700

(0.5,0.5)13.1{0.33 [0.27] »-012777

(05,05)(31]030 |0.27] r- 017 |
(0.5,0.5){3.1]0.27 [0.27] -0

(0.0,0.0)[3.1]0.345]0.27] »- 0T8T
(0.0,0.0)[3.1]0.335| 0.30 | 01558 ]
(0.0,0.0) [ 3.1[0.345]0.33 | 01890 |
(0.0,0.0)[3.1[0.345]0.36| o1 |
(0.0,0.0)]3.1]033 [0.27] - 0T%F
(0.0,0.0)]3.1]030 [0.27] »-01BF ]
(0.0,00)|3.1]027 |0.27] r-0ms30 |

this figure reveals that the continuity of displucement and traction on the interface is satisfied
along with traction-free conditions on the free edge.

Table 2 shows the dependence of the strength of the singularity on the ratio £5/E,,
holding Poisson’s ratio constant. The singularity increases as the ratio E,/E, increases,

Table 3 shows the relatively weak dependence of the stress singularity on the values of
v, and v, for lincar materials, holding the ratio of £,/E, constant. The results show that
the degree of singularity remains relatively small for widely varying values of Poisson’s
ratio.

Table 4 shows the dependence of the stress singularity on various values of v, and v.,
for bilincar materials. Again. Poisson’s ratio has a relatively weak influence on the stress
singufarity.
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CONCLUSIONS

The stress singularity r*~' for 0 < s < | that occurs at the free edge in a bimaterial
strip with bilinear material properties has been investigated. The singularity is typically
much stronger when the materials exhibit a bilinear stress-strain response, compared with
linear elastic materials.
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